نسخه ی 1.13 تنسورفلو منتشر شد
نسخه ی 1.13.0 تنسورفلو منتشر شد. هم اکنون که تنها 22 ساعت از انتشار این نسخه می گذرد ما شما رو از تغییرات این نسخه با خبر میکنیم. تنسورفلو (TensorFlow) کتابخانه ی متنبازی برای یادگیری ماشین است. هم اکنون توسط ۵۰ تیم تحقیقاتی و شرکت گوگل برای شناسایی گفتار، Gmail، تصاویر گوگل و در جستجوگر گوگل استفاده میشود. با کلیک بر روی لینک گیت هاب می توانید این نسخه را دانلود کنید یا به صورت مستقیم از آرشیو گیت هاب به آن دسترسی داشته باشید.
به روز رسانی خبر:
- نسخه ی 1.13.0، کمتر از 24 ساعت به دلایل نامعلومی از گیت هاب حذف شد.
- نسخه ی TensorFlow 1.13.1 در 2:54 (Tuesday, February 26, 2019 (GMT+3:30 منتشر شد، حذف ناگهانی نسخه ی 1.13.0 جالب بود، بخاطر همین ما تغییرات این نسخه را در همین صفحه دنبال می کنیم.
ویژگی های مهم و پیشرفت های تنسور فلو 1.13.0
- TensorFlow Lite has moved from contrib to core. This means that Python modules are under
tf.liteand source code is now undertensorflow/literather thantensorflow/contrib/lite. - TensorFlow GPU binaries are now built against CUDA 10 and TensorRT 5.0.
- Support for Python3.7 on all operating systems.
- Moved NCCL to core.
تغییرات رفتاری
- Disallow conversion of python floating types to uint32/64 (matching behavior of other integer types) in
tf.constant. - Make the
gainargument of convolutional orthogonal initializers have consistent behavior with thetf.initializers.orthogonalinitializer, i.e. scale the output l2-norm bygainand NOT bysqrt(gain). (Note that these functions are currently intf.contribwhich is not guaranteed backward compatible).
رفع اشکال و سایر تغییرات
اسناد
- Update the doc with the details about the rounding mode used in quantize_and_dequantize_v2.
- Clarify that tensorflow::port::InitMain() should be called before using the TensorFlow library. Programs failing to do this are not portable to all platforms.
فراموشی و تغییر نام نمادها
- Removing deprecations for endpoints
- Deprecate
tf.data.Dataset.shard. - Deprecate
saved_model.loader.loadwhich is replaced bysaved_model.loadandsaved_model.main_op, which will be replaced bysaved_model.main_opin V2. - Deprecate tf.QUANTIZED_DTYPES. The official new symbol is tf.dtypes.QUANTIZED_DTYPES.
- Update sklearn imports for deprecated packages.
- Deprecate
Variable.count_up_toandtf.count_up_toin favor ofDataset.range. - Export
confusion_matrixop astf.math.confusion_matrixinstead oftf.train.confusion_matrix. - Add
tf.dtypes.endpoint for every constant in dtypes.py; moving endpoints in versions.py to corresponding endpoints intf.sysconfig.andtf.version.; moving all constants undertf.saved_modelsubmodules totf.saved_modelmodule. New endpoints are added in V1 and V2 but existing endpoint removals are only applied in V2. - Deprecates behavior where device assignment overrides collocation constraints inside a collocation context manager.
رابط برنامه نویسی کاربردی کراس و پایتون
- Add to Keras functionality analogous to
tf.register_tensor_conversion_function. - Subclassed Keras models can now be saved through
tf.contrib.saved_model.save_keras_model. LinearOperator.matmulnow returns a newLinearOperator.
عملیات جدید و بهبود عملکرد عملیات
- Add a Nearest Neighbor Resize op.
- Add an
ignore_unknownargument toparse_valueswhich suppresses ValueError for unknown hyperparameter types. Such * Addtf.linalg.matvecconvenience function. tf.einsum()raisesValueErrorfor unsupported equations like"ii->".- Add DCT-I and IDCT-I in
tf.signal.dctandtf.signal.idct. - Add LU decomposition op.
- Add quantile loss to gradient boosted trees in estimator.
- Add
round_modetoQuantizeAndDequantizeV2op to select rounding algorithm. - Add
unicode_encode,unicode_decode,unicode_decode_with_offsets,unicode_split,unicode_split_with_offset, andunicode_transcodeops. Amongst other things, this Op adds the ability to encode, decode, and transcode a variety of input text encoding formats into the main Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE) - Add “unit” attribute to the substr op, which allows obtaining the substring of a string containing unicode characters.
- Broadcasting support for Ragged Tensors.
SpaceToDepthsupports uint8 data type.- Support multi-label quantile regression in estimator.
- We now use “div” as the default partition_strategy in
tf.nn.safe_embedding_lookup_sparse,tf.nn.sampled_softmaxandtf.nn.nce_loss.
hyperparameter are ignored.
کارایی
- Improve performance of GPU cumsum/cumprod by up to 300x.
- Added support for weight decay in most TPU embedding optimizers, including AdamW and MomentumW.
توسعه TensorFlow 2.0
- Add a command line tool to convert to TF2.0, tf_upgrade_v2
- Merge
tf.spectralintotf.signalfor TensorFlow 2.0. - Change the default recurrent activation function for LSTM from ‘hard_sigmoid’ to ‘sigmoid’ in 2.0. Historically recurrent activation is ‘hard_sigmoid’ since it is fast than ‘sigmoid’. With new unified backend between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we change the default for CPU mode to sigmoid as well. With that, the default LSTM will be compatible with both CPU and GPU kernel. This will enable user with GPU to use CuDNN kernel by default and get a 10x performance boost in training. Note that this is checkpoint breaking change. If user want to use their 1.x pre-trained checkpoint, please construct the layer with LSTM(recurrent_activation=’hard_sigmoid’) to fallback to 1.x behavior.
نسخه TensorFlow Lite
- Move from
tensorflow/contrib/litetotensorflow/lite. - Add experimental Java API for injecting TensorFlow Lite delegates
- Add support for strings in TensorFlow Lite Java API.
بخش tf.contrib
- Add Apache Ignite Filesystem plugin to support accessing Apache IGFS.
- Dropout now takes
rateargument,keep_probis deprecated. - Estimator occurrences references
tf.contrib.estimatorwere changed totf.estimator:tf.contrib.estimator.BaselineEstimatorwithtf.estimator.BaselineEstimatortf.contrib.estimator.DNNLinearCombinedEstimatorwithtf.estimator.DNNLinearCombinedEstimatortf.contrib.estimator.DNNEstimatorwithtf.estimator.DNNEstimatortf.contrib.estimator.LinearEstimatorwithtf.estimator.LinearEstimatortf.contrib.estimator.InMemoryEvaluatorHookand tf.estimator.experimental.InMemoryEvaluatorHook`.tf.contrib.estimator.make_stop_at_checkpoint_step_hook- with
tf.estimator.experimental.make_stop_at_checkpoint_step_hook.
- Expose `tf.distribute.Strategy as the new name for tf.contrib.distribute.DistributionStrategy.
- Migrate linear optimizer from contrib to core.
- Move
tf.contrib.signaltotf.signal(preserving aliases in tf.contrib.signal). - Users of
tf.contrib.estimator.export_all_saved_modelsand related should switch totf.estimator.Estimator.experimental_export_all_saved_models.
نسخه tf.data
- Add
tf.data.experimental.StatsOptions(), to configure options to collect statistics fromtf.data.Datasetpipeline usingStatsAggregator. Add nested option,experimental_stats(which takes atf.data.experimen tal.StatsOptionsobject), totf.data.Options. Deprecatestf.data.experimental.set_stats_agregator. - Performance optimizations:
- Add
tf.data.experimental.OptimizationOptions(), to configure options to enabletf.dataperformance optimizations. Add nested option,experimental_optimization(which takes atf.data.experimental.OptimizationOptionsobject), totf.data.Options. Remove performance optimization options fromtf.data.Options, and add them undertf.data.experimental.OptimizationOptionsinstead. - Enable
map_and_batch_fusionandnoop_eliminationoptimizations by default. They can be disabled by configuringtf.data.experimental.OptimizationOptionsto setmap_and_batch = Falseornoop_elimination = Falserespectively. To disable all default optimizations, setapply_default_optimizations = False. - Support parallel map in
map_and_filter_fusion. - Disable static optimizations for input pipelines that use non-resource
tf.Variables.
- Add
- Add NUMA-aware MapAndBatch dataset.
- Deprecate
tf.data.Dataset.make_one_shot_iterator()in V1, removed it from V2, and added tf.compat.v1.data.make_one_shot_iterator()`. - Deprecate
tf.data.Dataset.make_initializable_iterator()in V1, removed it from V2, and addedtf.compat.v1.data.make_initializable_iterator(). - Enable nested dataset support in core
tf.datatransformations. - For
tf.data.Datasetimplementers: Addedtf.data.Dataset._element_structured propertyto replaceDataset.output_{types,shapes,classes}. - Make
num_parallel_callsoftf.data.Dataset.interleaveandtf.data.Dataset.mapwork in Eager mode.
زنجیره ابزارها یا Toolchainها
- Fixed OpenSSL compatibility by avoiding
EVP_MD_CTX_destroy. - Added bounds checking to printing deprecation warnings.
- Upgraded CUDA dependency to 10.0
- To build with Android NDK r14b, add “#include <linux/compiler.h>” to android-ndk-r14b/platforms/android-14/arch-*/usr/include/linux/futex.h
- Removed
:android_tensorflow_lib_selective_registration*targets, use:android_tensorflow_lib_lite*targets instead.
XLA
- Move
RoundToEvenfunction to xla/client/lib/math.h. - A new environment variable
TF_XLA_DEBUG_OPTIONS_PASSTHROUGHset to “1” or “true” allows the debug options passed within an XRTCompile op to be passed directly to the XLA compilation backend. If such variable is not set (service side), only a restricted set will be passed through. - Allow the XRTCompile op to return the ProgramShape resulted form the XLA compilation as a second return argument.
- XLA HLO graphs can now be rendered as SVG/HTML.
تخمین گر
- Replace all occurences of
tf.contrib.estimator.BaselineEstimatorwithtf.estimator.BaselineEstimator - Replace all occurences of
tf.contrib.estimator.DNNLinearCombinedEstimatorwithtf.estimator.DNNLinearCombinedEstimator - Replace all occurrences of
tf.contrib.estimator.DNNEstimatorwithtf.estimator.DNNEstimator - Replace all occurrences of
tf.contrib.estimator.LinearEstimatorwithtf.estimator.LinearEstimator - Users of
tf.contrib.estimator.export_all_saved_modelsand related should switch totf.estimator.Estimator.experimental_export_all_saved_models. - Update
regression_headto the new Head API for Canned Estimator V2. - Switch
multi_class_headto Head API for Canned Estimator V2. - Replace all occurences of
tf.contrib.estimator.InMemoryEvaluatorHook - and
tf.contrib.estimator.make_stop_at_checkpoint_step_hook withtf.estimator.experimental.InMemoryEvaluatorHookandtf.estimator.experimental.make_stop_at_checkpoint_step_hook- Migrate linear optimizer from contrib to core.






دیدگاه خود را ثبت کنید
تمایل دارید در گفتگوها شرکت کنید؟در گفتگو ها شرکت کنید.